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Abstract
High-speed diagnostics are essential for understanding the unsteady flow fields in rotating detonation

combustors (RDCs). However, the experimental data from RDCs often exhibit significant stochasticity due
to factors such as lap-to-lap detonation wave fluctuations, measurement uncertainties, and sensor-induced ar-
tifacts. Traditional phase-averaging techniques, like the arithmetic mean, can distort the true detonation wave
structure by smoothing out key features due to temporal misalignment. This study investigates the applica-
tion of soft-Dynamic Time Warping (soft-DTW) based averaging as a more accurate method for processing
high-speed RDC data. Unlike conventional methods, soft-DTW is resilient to local time-axis distortions,
allowing for better alignment and preservation of the intrinsic wave structure. The study evaluates the capa-
bility of soft-DTW to capture essential physical characteristics of rotating detonation waves using dynamic
pressure and video data. Additionally, a sensitivity analysis assesses the method’s effectiveness in accurately
representing secondary features, such as reflected shock waves, highlighting its potential for more represen-
tative RDC data averaging.
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1. Introduction
Rotating detonation combustors (RDCs) are a focus of pressure gain combustion (PGC) research, oper-

ating with continuously propagating detonation waves that increase stagnation pressure. These waves rotate
within the combustion chamber at frequencies of several kHz. Experimental studies rely on high-frequency
pressure data and diagnostics to estimate wave frequency and analyze detonation wave behavior [4, 3, 2, 8,
7]. Averaging time series data is crucial for understanding RDC wave dynamics but is complicated by high
stochasticity in experimental data, due to factors like sensor noise, response time, and sampling rate. Tradi-
tional averaging methods, such as the Euclidean approach, often misrepresent the detonation wave structure
by smoothing out sharp features and introducing alignment errors. For instance, Bohon et al. [4] used Eu-
clidean phase averaging, which resulted in the loss of critical wave details due to lap-to-lap fluctuations. In
contrast, the soft Dynamic Time Warping (soft-DTW) method offers a more accurate approach to averaging,
preserving wave features. This paper outlines a detailed procedure for applying soft-DTW to RDC data, aim-
ing to enhance its reliability and performance, especially compared to the commonly used Euclidean method.
Further investigation is required to validate and optimize soft-DTW applied to RDC-type data, focusing on
the key parameters that influence its performance.

2. Methods
2.1. Averaging of Time Series

The goal of time series averaging is to derive a representative time series, denoted as x, that approximates
a set of time series Y = y1,y2, . . . ,yN using a chosen cost-alignment metric. This resulting time series x
is known as the barycenter. In this work each yj in Y represents the pressure trace over a single detonation
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wave period for a detonation process characterized by the formation of a single wave. A common method
for averaging is to minimize the Euclidean distance between x and the time series in Y. However, the
Euclidean distance is sensitive to temporal shifts, leading to poor alignment when time series have temporal
fluctuations. To improve robustness, Dynamic Time Warping (DTW) is preferred, as it warps the time axis
to align similar features, offering more accurate averaging [6]. Figure 1 highlights the difference between
Euclidean and DTW distance in aligning two time series.

Fig. 1: Alignment of two example RDC time series data using (a) the Euclidean metric, and (b) the DTW
metric.

The DTW time series alignment method selects the alignment with the lowest cost among all possible
alignments [6]. In contrast, the soft-DTW method introduced by Cuturi et al. replaces the standard minimum
operation with a ”soft” minimum function [5]. Soft-DTW incorporates a smoothing parameter, γ, which
accounts for the trade-off between smoothness and accuracy [Blondel2021]. Unlike the DTW method, soft-
DTW evaluates all possible alignments of the time-series, assigning weights based on their probabilities
according to the Gibbs distribution.

2.2. Experimental Setup
The data for this study were collected from a non-premixed rotating detonation combustor at TU Berlin,

as described by Bach et al. [1]. The RDC has an annular chamber with a length of 110 mm, an outer
diameter of 90 mm, and a gap width of 7.6 mm. Hydrogen is injected axially through 100 holes, while
air is introduced radially inward, creating a jet-in-crossflow. Pressure measurements were acquired using
PCB 112A05 piezoelectric transducers mounted along the combustor to capture dynamic pressure variations
within the detonation zone and the oblique shock region. To protect the sensors, the runtime was limited to
300 ms, with data sampled at 500 kHz. The air mass flow rate was 500 g/s, and the global equivalence ratio
was set to stoichiometric for optimal detonation.

2.3. Application of the soft-DTW Method on RDC Type Data
The primary objective of this study is to provide a detailed guideline for applying the soft-DTW method to

average time series data from RDCs. The pressure signals obtained during experimental tests were processed
and aligned using a DTW-based iterative averaging technique. Figure 3 presents the steps and key parameters
required to capture the detonation wave dynamics. The flowchart differentiates between critical parameters
explored in this study (highlighted in blue) and those established in the literature (highlighted in orange),
which were not further examined.

The procedure consists of several key stages: post-processing of raw pressure data, configuring soft-
DTW parameters, and performing barycenter calculations. Initially, pressure signals - either raw or filtered
- are segmented into time series representing individual detonation wave cycles, determined by the average
wave frequency (see Fig. 2). The time series are then aligned based on specific criteria, such as pressure slope
alignment or peak alignment, which emphasizes the detonation wave’s passage. Once aligned, the time se-
ries are subjected to time normalization according to the average wave period and pressure normalization
between [−1, 1]. Key parameters governing the soft-DTW method include the number of time series, initial-
ization, number of iterations, smoothing parameter, and weighting. The first two - time series selection and
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Fig. 2: RDC sensor locations and corresponding time series.

initialization - are critical as they influence the pressure peak’s shape and timing in the calculated barycenter
and are thoroughly analyzed in subsequent sections. The number of iterations primarily influences the con-
vergence time of the calculation, with a relatively minor impact on the final barycenter compared to other
key parameters. Cuturi et al. [5] recommend using a minimum of 50 iterations to ensure robust results.
The smoothing parameter controls idiosyncrasies and noise present in the pressure time series; excessive
smoothing may yields an underestimation of the wave peak, reducing accuracy. Weights were uniformly
assigned, treating all time series equally in determining the mean wave structure. The process is divided into
two stages: initialization and barycenter computation. Initializing the soft-DTW process with a precomputed
barycenter mitigates the effects of time series stochasticity by starting the calculation with a barycenter that
approximates the final shape. This approach enhances the accuracy of the final barycenter in representing
the detonation wave dynamics and minimizes distortions introduced by anomalous trends in the data.

3. Results
3.1. Sensitivity to Soft-DTW Inputs

The soft-DTW method, as illustrated in Figure 3, is critically dependent on several key parameters that
dictate the final outcome. The selection of these parameters is closely linked to the characteristics of the raw
pressure time series obtained from the post-processing of experimental data. While variations in data quality
may require adjustments to the setup, general procedures for optimal parameter selection can be established,
enabling their application across various types of RDC datasets.

3.2. Alignment Criteria
Time series alignment is performed during the post-processing of pressure measurements. While various

alignment criteria can be arbitrarily applied, in the context of analyzing the structure and dynamics of det-
onation waves using high-speed diagnostics, the focus typically lies on aligning wave passages with respect
to characteristic features of the pressure peak. Two widely used alignment methods for RDC time series are
based on the pressure peak and the slope of the pressure rise. In the first method, time series are aligned
according to the maximum pressure value captured by the instrumentation, ensuring that the mean position
of the barycentric peak is located at the same temporal point across all series. In contrast, the second method
aligns wave periods based on the pressure gradient, which reflects the rate of pressure increase induced by
the detonation. This approach overlaps the time series according to the time variation in pressure.

A comparison of these two alignment methods is presented in Figure 4. Both barycenters were computed
using the procedure detailed in previous sections, considering the same time series and applying identical
soft-DTW configurations. As shown, in both cases, the pressure peak is captured accurately, reflecting the
expected sharp rise and subsequent expansion of the pressure. However, when aligning based on the peak
value, a pronounced knee appears, unrelated to the detonation process, which corresponds to a strong positive
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Fig. 3: Procedure for implementing the soft-DTW averaging method for RDC type time series.

pressure gradient. The rate at which the maximum pressure is reached, determined by the detonation reaction
time, is a critical parameter for reconstructing wave dynamics. Therefore, aligning based on the pressure
gradient of the rising edge provides a more balanced representation, capturing both the pressure peak and
the underlying wave dynamics more effectively.

3.3. Initialization
The initialization used to calculate the barycenter via the soft-DTW method has been identified as a

critical parameter with significant influence on the final barycenter’s shape. Since the initializing time series
or barycenter directly influences the resulting barycenter, careful selection of this parameter is important to
increase the probability of converging toward an average that better reflects the structure of the time series
under consideration.

Cuturi et al. [5] compared soft-DTW barycenters obtained using Euclidean initialization and a randomly
selected time series from the analyzed dataset. Their results demonstrated that initializing with a random time
series yields a barycenter that better preserves the structural integrity of the selected time series. However,
due to the high degree of stochasticity in experimentally obtained RDC data, random selection of a time
series for initialization is not feasible. A randomly chosen series may deviate significantly from the others in
terms of peak shape, position, and intensity, resulting in a distorted barycenter that does not accurately reflect
the average pressure values over the wave time period. To address this issue, a method to guide the selection
of initialization has been proposed, minimizing the unpredictability associated with random selection while
avoiding the limitations of Euclidean initialization. This approach ensures a more representative and robust
barycenter that better conforms to the underlying characteristics of the time series data.

Given the critical importance of initialization shape in determining the final barycenter, the proposed
procedure aims to identify an optimal time series for initialization. The primary objective is to find a time
series that best approximates the entire dataset used for averaging.

Figure 5 illustrates the calculation sequence. The first step involves constructing the DTW Distance Ma-
trix, which is an n×n symmetric matrix, where each element (i, j) represents the DTW distance between the
i-th and j-th time series. The DTW distance quantifies the minimum alignment cost between two time series,
considering point-wise differences between aligned values. Unlike Euclidean distance, DTW accounts for
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Fig. 4: Comparison of peak- and rising edge-aligned barycenters.

Fig. 5: Initialization procedure to identify the most representative individual time series.

nonlinear temporal shifts, making it particularly useful for comparing sequences that may be misaligned or
vary in length. Once the DTW Distance Matrix is computed, the next step is to sum the distances between
each time series and all others. The time series with the smallest cumulative distance relative to the rest of the
dataset is considered the closest to the overall dataset in terms of DTW distance. This suggests that its shape
and temporal alignment are already more representative of the barycenter, making it an ideal starting point
for the soft-DTW barycenter calculation. To assess the robustness of the proposed method, the approach was
applied to multiple RDC datasets, acquired from pressure sensors placed at distinct locations relative to the
detonation zone and under varied operating conditions. This comprehensive evaluation across diverse exper-
imental conditions ensures the method’s applicability and reliability in capturing the underlying dynamics
of detonation processes.

Figure 2 presents the wave periods for the various cases analyzed, post-processed using the procedure
outlined in the flowchart. Specifically, three of the datasets were obtained from piezoelectric pressure sensors
located directly in the detonation zone, where wave formation occurs, while the final dataset was derived from
pressure measurements in the oblique shock region.

For each dataset, the method for determining initialization, as previously described, was applied. Figure
6 illustrates the results of the soft-DTW barycenter calculations using the proposed initialization procedure.
For each dataset, the soft-DTW barycenters, Euclidean barycenter, and the time series selected for initial-
ization (the ’output’ of the initialization procedure) are shown. The overlay of the three barycenters with the
time series used for calculation enables a direct comparison between the methods by highlighting both the
dynamic and static characteristics of the detonation wave.

The International Conference on Jets, Wakes and Separated Flows 2024 5



M. Tagliaferri, P. Barnouin, E. Bach, C. O. Paschereit, M. D. Bohon

Fig. 6: Initialization procedure application on RDC data sets.

In all analyzed cases, the soft-DTW method demonstrates a superior ability to capture the trends in the
raw time series, and the initialization aligns consistently with the final barycenter shape. This results in a
more precise representation of the pressure peak, characterized by higher sharpness, and of the time pressure
rise, identifiable by the positive slope of the peak. The soft-DTW method maintains consistency across all
wave transitions, accurately reflecting the experimental measurements. This confirms both the feasibility
and robustness of the computational sequence employed for determining the initialization.

The primary shortcoming of the Euclidean barycenter is clearly visible in Figures 6(b) and (d). In cases
where the experimental data exhibit greater dispersion, the Euclidean barycenter excessively smooths the
pressure peaks, producing a non-physical temporal pressure trend. In Figure 6(b), the Euclidean barycenter
fails to capture the distinctive shape of the time series, particularly when a double peak occurs over a short
temporal interval, further highlighting its limitations in resolving complex wave dynamics.

3.4. Dependence on the Number of Time Series
The number of time series considered is closely tied to the quality of the data measured by the instrument.

Significant variability among time series can lead to underestimation of both the pressure peak and the rate
at which it is reached. However, the soft-DTW method mitigates these challenges, effectively handling the
stochasticity present in the pressure signals.

Figure 7 compares barycenters generated by the two methods for two distinct cases. In case 7(a), most
time series exhibit pressure peaks within a narrow temporal range, whereas in case 7(b), the peak positions
are more variable and dispersed. The Figure 7 highlights the advantages of the soft-DTW method, showing
that the number of time series considered has minimal impact on the resulting barycenter, as evidenced by
the nearly identical overlapping barycenters. In case 7(a), the Euclidean barycenter also exhibits minimal
dependence to variation in the number of time series; however, this does not hold true for case 7(b). The
broader temporal distribution of peak pressure in case 7(b) causes the Euclidean method to excessively
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smooth the signal, significantly underestimating the peak. Nevertheless, increasing the number of time series
in the Euclidean method reduces this underestimation and enhances peak sharpness, bringing it closer to the
true time series dynamics.

Fig. 7: Comparison of soft-DTW and Euclidean methods across different numbers of time series.

4. Conclusion
This paper presents a procedure for averaging RDC type pressure time series using the soft-DTW method.

From defining the time series to configuring the key parameters of the soft-DTW calculation, the procedure
establishes a clear framework for obtaining reliable results from RDC type data. The analysis demonstrates
that the soft-DTW method is more effective than the Euclidean approach in constructing the average circum-
ferential wave structure. Specifically, it allows for consistent extraction of the wave peak and its dynamics,
even in the presence of considerable fluctuations in wave velocity between cycles. Furthermore, the impor-
tance of proper initialization is highlighted, as it facilitates the generation of a barycenter that closely aligns
with the underlying wave dynamics, ultimately improving the accuracy and robustness of the analysis.
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