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1. Introduction
The efficiency of combustion processes within modern gas turbines strongly depends on fuel-air mixing,

heat transfer mechanisms, and flame stability. To address these aspects and ensure a reliable flame anchoring,
combustors comprise a swirler element which imprints a defined swirl on the air flowing through the burner [1,
2]. The thermal-flow mechanisms within swirl-stabilized flames have been extensively studied [2–5]. In this
respect, and particularly in the context of novel carbon-free fuels which require fuel flexibility, the ability to
actively vary the degree of swirl offers a significant advantage [3], as it can aid the in-depth investigation of
different flames stabilized by the same burner. In this context, we have developed a novel burner concept capable
of an active and continuous swirl variation [6]. The burner solely relies on fluidic actuation, i.e. the controlled
injection of a secondary air mass flow, and allows to vary the flow regime from a non-swirled axial jet to a fully
swirled flow. The underlying working principle has been first qualitatively demonstrated through numerical
simulations and then experimentally validated through Laser Doppler Anemometry (LDA) [7]. While LDA
was found to be a suitable technique to characterize the flow velocity profiles, it only acquires velocity data for
sparsely distributed measurement points, and accurate LDA measurements require long data acquisition periods
at each measurement position. As a result, the quality of LDA measurements is governed by a trade-off between
the measurement time and the spatial resolution of the collected data points.

In this respect, this work demonstrates the potential of Physics-Informed Neural Networks (PINNs) to as-
similate continuous flow fields from sparsely distributed LDA measurement points. For three different operation
points, namely featuring no swirl, an intermediate degree of swirl, and a fully swirled flow regime, LDA ex-
perimental data was first acquired within discrete spatial measurement grids at various axial distances from the
swirler’s outlet. This data was then used to train PINN models, which yield a continuous flow field represen-
tation through the evaluation of Reynolds-Averaged Navier-Stokes (RANS) equations. A continuous function
is produced which is differentiable within the entire flow domain, thus allowing for further analyses of the flow
field, since the underlying physics (conservation of mass and momentum) is taken into consideration. The con-
sideration of the physics is especially advantageous since it allows for the accurate reconstruction of all three
velocity components characterizing the respective flow field. This aspect in particular will be exploited in the
present work. The acquisition of the radial velocity component ur has proven to be difficult due to its compar-
atively low values. Here we apply the PINN method to assimilate the radial velocity component based on the
axial and tangential velocity components and the RANS equations. Additionally, for each operating point, the
amount of training data used is systematically reduced while evaluating the physical validity of the computed
flow field. As a result, the possibility to properly characterize a complex flow field through a minimum amount
of required experimental training data is demonstrated.

2. Methodology
In this section we describe the setup used for the acquisition of the velocity data and the PINNs method.

2.1. Experimental Test Facility
The experimental data for the flow field characterization was acquired through LDA measurements under

atmospheric and non-reacting conditions. Details on the test facility are schematically depicted in Fig. 1, and
summarized in the following. Details and results can be furthermore found in [7]. The open test facility primarily
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Fig. 1: Left: Experimental setup used to study the fluidic burner. Right: Schematic of the LDA setup.

consists of an air plenum connected to the fluidic burner. The primary air is led into the plenum through a
filtered air supply, controlled by Mass Flow Controllers (MFCs). The secondary air is directly induced through
a separate MFC. The primary air is infused with seeding particles through an apposite atomizer, needed for
LDA measurements. The distributed particles have a median diameter of below 1 µm and it is assumed that the
particle movement reliably resolves the flow. The average Reynolds number, based on the burner outlet diameter
D, is kept constant at Re ≈ 105, along with the total air mass flow ṁtot = ṁp + ṁs ≡ 175 kg

h , amounting to a
bulk velocity of uBulk = 44.6m

s . The Mass Flow Ratio MFR = ṁs
ṁp

between secondary and primary air, however,
is varied to three operating points with three degrees of swirl, respectively: A non-swirled jet at MFR = 6%, a
flow subjected to an intermediate degree of swirl at MFR = 10%, and a fully swirled flow at MFR = 30%.

The employed 2D LDA system by Dantec relies on a two-color, four-beams laser system, featuring a 490 mW
argon-ion laser by Spectra-Physics. Each of the colored beams is split in two, and one of each is led through a
40 MHz Bragg-Cell, where they are subjected to a frequency shift for directional sensitivity of the system. All
four beams are then led through an integrated transmitting and receiving optic unit, which configures multiple
beam parameters and simultaneously captures scattered and reflected light signals from seeding particles pass-
ing through the measurement volume. The focal length is set to f = 310 mm. For each emitted wavelength,
the scattered light signals are processed through a photomultiplier, allowing for the simultaneous acquisition
of two orthogonal velocity components in the Cartesian plane perpendicular to the laser-optic axis. The signal
bursts are then analyzed in a Burst Spectrum Analyzer (BSA, Model Dantec BSA F60), which computes physi-
cal velocity values for each particle passing through the measurement volume within a given measurement time.
For every measurement point, a velocity is inferred for each seeding particle (separately for each laser-/velocity-
component), registered in a statistically significant amount of particle data within a given measurement time.
A pronounced axial symmetry of the flow field downstream of the novel burner has been observed and demon-
strated. In consequence, the experimental data used in this work could be advantageously acquired relying on
measurements with a spatial location distribution following X-shaped grids, assuming an axisymmetric flow
distribution. Here, the measurement locations are distributed along straight beams, aligned with the x and y
coordinate axes for various constant axial distances z. In this regard, the used LDA setup can directly be used
to acquire the respective tangential velocity components along one measurement point beam, the radial velocity
components along the other, while acquiring the axial velocity for all measurement points. The use of X-shaped
grids is found to be advantageous because it allows for a time-optimized assessment of the investigated flow
field.

2.2. Physics-Informed Neural Networks
PINNs allow to approximate given data with a neural network and take physics constraints in the form of

partial differential equations into account during network training [8]. As a result, the trained neural network
approximates both the given data and a solution to a given set of equations. In the present work, PINNs are ap-
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plied to reconstruct time-averaged LDA velocity fields and to approximate a solution of the RANS equations [9].
To this end, a neural network is set up that maps spatial coordinates to the mean flow quantities:

[uα, p, να] = fα(z, r), (1)

where uα = [uα,z, uα,r, uα,t] is the mean velocity vector, pα is the mean modified pressure, να is the eddy
viscosity and z and r are the axial and radial coordinates. The neural network is denoted by fα, where α
represents the vector of trainable network parameters. These parameters are found by minimizing a composite
loss function that constrains the PINN outputs to the measured data, physics equations, and additional boundary
conditions:

α = argmin Ldata + λ1Lphysics + λ2Lbc. (2)

Here, λ1 and λ2 are weights that allow to shift the focus of network training between the individual constraints.
The first term, Ldata, is the data loss term that penalizes deviations from the PINN output to available data points.
In the present work, the measured axial and azimuthal velocities are used as training data:

Ldata =
1

NzNr

Nz∑
i

Nr∑
j

(uα,z(zi, rj)− u∗z(zi, rj))
2 + (uα,t(zi, rj)− u∗t (zi, rj))

2 , (3)

where the ∗-superscript denotes a measured quantity. Nz and Nr denote the total number of axial and radial
measured locations which correspond to the number of measured planes and the number of measurement po-
sitions within each plane respectively. To evaluate the physics loss, the PINN output quantities are substituted
into the RANS equations with the Boussinesq eddy viscosity model:

(uα · ∇)uα +∇pα −∇ ·
[
(ν + να)[∇uα +∇uT

α ]
]
= e1, (4a)

∇ · uα = e2, (4b)

where e1 and e2 denote the residual of the RANS equations and the continuity equation, respectively. The
residuals are evaluated atNc discrete points sampled across the domain. The averaged residuals form the physics
loss

Lphysics =
1

Nc

Nc∑
i

||rie1(zi, ri)||22 + |rie1(zi, ri)|2, (5)

where the residuals are locally weighted with the radial coordinate to avoid division by zero. Similar to the
data and the physics loss term, boundary conditions are implemented by adding a third loss term, Lbc. The
term enforces zero radial and tangential velocities on the symmetry axis, zero axial and tangential velocities for
large radii, zero radial derivative of the axial velocity component on the symmetry axis, and no-slip boundary
conditions on the upstream located wall. All constraints in Eq. (2) are taken into account in the form of deviations
at discrete points in the cost function. However, the PINN is a continuous function which, once trained, can be
evaluated at any point in space. In this work, network architectures with five layers of 20 neurons each are used.
The tanh function is used as the activation function, and linear functions are used in the output layer.

3. Results
In this section, key features of the reconstructed flow fields are presented and discussed. First, the results

are exemplary discussed for the operating point at MFR = 30%, in which a fully swirled flow is observed (swirl
number of S ≈ 0.9). In this regard, a reference case is created, in which a PINN is trained with the maximum
available quantity of training data. The training data consists of cylindrical velocity components (time averaged
uz and ut), experimentally acquired on X-shaped measurement grids over ten axial distances downstream of the
outlet of the burner’s mixing tube (1 ≤ z/D ≤ 10 with the outlet diameter D).

3.1. Reference Case Validation
The quality of the reference PINN model, trained with data from all available ten planes, is determined by

the residual of the physics loss. In particular, we show in Fig. 2 its component related to the conservation of
mass, the residual of Eq. (4b), which quantifies the local violation of the mass conservation within each cell
of the domain. Since the PINNs rely on normalized input data, not comprising any physical dimension, the
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Fig. 2: Dimensionless residual of the physics loss concerning mass conservation for MFR = 30%, reference case with
maximum amount of training data. As axial symmetry is assumed, the domain is shown as a half longitudinal section,
where the left border at z/D = 0 represents the outlet plane of the burner’s mixing tube (flow direction: left to right).

residuals are analogously dimensionless. At first, an area with a relatively large error is noticeable for r/D ≤ 1
and z/D ≤ 1. Here, the physical evaluation of the conservation of mass is confronted with a pronounced
violation. Nevertheless, this area represents a relatively small portion of the evaluated domain and is furthermore
located upstream of the first plane containing experimental training data, and downstream of the inflow boundary
condition at z/D = 0. In combination with the high velocity gradients present close to the mixing tube outlet,
the reconstructed flow field lacks robustness here. On the other hand, in the vast majority of the domain, for
z/D ≥ 1, the mass conservation error is extremely low, averaging less than 10−4, validating the employed PINN
approach for areas located downstream of the first training data plane.

3.2. Reconstruction of Radial Velocity Field
Having validated the PINNs approach, we now utilize it to study the flow fields stabilized by the fluidic

burner. Fig. 3 shows the three cylindrical velocity components (uz , ur, and ut) for the reference case at MFR =
30%, which features a high degree of swirl. The uz component shows an area close to the mixing tube outlet,
at r/D ≤ 0.5 and z/D ≤ 2, with a pronounced reversed flow amounting up to approximately 45% of the bulk
velocity. This indicates the occurrence of a vortex breakdown creating a recirculation zone, as is the case for
swirling flows stabilized by state-of-the-art swirl burners. This furthermore proves the ability of the employed
PINN approach to reconstruct physically-relevant features of the flow. Close to the recirculation zone, a high
tangential flow velocity is reconstructed, having the same order of magnitude as uz . For higher radial and
axial distances, an increasing amount of air is entrained, enlarging the area of swirling fluid and simultaneously
reducing ut.

As mentioned in § 1, the experimental acquisition of the radial velocity component ur is found to be chal-
lenging with the chosen experimental approach, since the respective velocity magnitude strongly diverts from
the other velocity components acquired simultaneously. As a result, ur is not used to train the PINNs, but recon-
structed by it. Hence, it is used as a parameter to assess the quality of the reconstructed flow fields. As visible
from the reconstructed ur depicted in the middle of Fig. 3, for axial distances z/D ≤ 1, the trend complies well
to the progression of uz and ut. Air is entrained along the entire outer domain border, visible from a region of
negative ur for high radii. At the same time, the swirling jet expands, imprinting a positive ur within the inner
domain region, between r/D ≤ 1 and r/D ≤ 2 for high z/D. Towards the end of the domain for z/D → 10,
the swirling jet is completely expanded, and the radial air entrainment ceases with ur

uBulk
→ 0. The physically-

sound features confirm that the trained PINN model correctly reconstructs the radial velocity field from the axial
and tangential velocity data measured in the experiments.

3.3. PINNs Training Optimization
One objective is to use PINNs to reduce the amount of experimental data, and thus the experimental time

and resources, needed to characterize the flow. To this extent, we reconstruct the ur velocity field from various
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Fig. 3: Reconstructed velocity components uz (top), ur (middle), and ut (bottom) for MFR = 30% at reference case. The
white arrows in the top figure denote the streamlines of the reconstructed flow in the r − z plane.

PINNs models trained with less data compared to the respective reference case. In particular, we use only the
velocity data acquired on N of the ten available measurement planes. Then, a radial velocity error factor is
computed via

Ur,error =

∑
z/D≥1 |uα10,r − uαN ,r|

uBulk
, (6)

which compares the radial velocities reconstructed with less data to their respective reference case. This is
repeated for three operating points with different MFR, thus swirl number. As discussed in § 3.1 and depicted
in Fig. 2, the physics error within the reconstructed flow fields is maximized at axial distances upstream of
the sampling location of the first training data (z/D < 1). Consequently, for the evaluation of the physical
validity of the training data optimized PINNs, only information for z/D ≥ 1 is considered. Fig. 4 depicts the
progression of the calculated radial velocity error factor Ur,error for all three operating conditions as N increases.
For all operating conditions, a clear trend is visible: the divergence of the reconstructed radial velocity from
the reference case monotonically decreases with increasing number of provided training data planes. The error
magnitude, however, depends on the operating condition. The largest error is seen for MFR = 30%, which has
a high degree of swirl and, thus, creates a complex flow field with high velocity gradients and areas of reversed
flow, as discussed in § 3. We note that the distribution of the planes chose to train the PINNs for N < 10 is not
uniform. As N increases, more planes located at low z/D are employed, since for higher z/D the flow field is
qualitatively similar to the operating points with no- and intermediate degree of swirl. Consequently, the error is
harmonized between all operating points for N ≥ 6, converging towards low levels between 0.05% and 0.12%.
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Fig. 4: Integrated error of radial velocity in % of the bulk velocity for all MFR cases. Data upstream of the first training
plane is not considered.

4. Conclusions
A PINNs-based method for the reconstruction of continuous flow fields from sparse experimental data was

presented. The method was tested on the flow fields generated by a novel burner concept, which allows for the
active variation the flow’s swirl number. For three operating conditions, with no, intermediate, and full swirl,
respectively, experimental data consisting of three cylindrical velocity components was acquired and used to
train PINN models. The suitability of the approach was validated, and reference cases were defined for the
three operating conditions. The reconstructed flow field for one exemplary point was discussed in detail, and
the divergence of the reconstructed radial velocity components between the reference and test cases was used to
quantify the accuracy of PINNs trained with sparse data.

The work shows that the PINN method can be used to reconstruct flow fields with different characteristics,
ranging form pure axial jets to fully swirled flows. Except for areas upstream of the first training data and close
to the inlet boundary, the reconstructed fields are physically valid and are suitable for the continuous evaluation
and characterization of the flow field. Furthermore, it was shown that a minimum amount of training data, at
approximately six axial locations, is needed to yield accurate results, regardless of the operating point. PINNs
hence have the potential to significantly reduce measurement expenses of complex measurement techniques and
allow for the reconstruction of complex 3D flow fields from sparse data.
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