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Abstract
In this study, the effect of different tessellations on the transition to supercritical flow and the sub-

sequent evolution of the boundary layers is investigated. The drag on tessellated spheres, comprising
mostly hexagonal flat panels, for a wide range of Reynolds number is measured by wind tunnel ex-
periments. Direct numerical simulations (DNS) are also carried out to provide and in depth analysis
on the boundary layer evolution and explain the differences on the drag coefficient. The skin friction,
pressure, velocity profiles and the turbulent kinetic energy are used to identify the location of the tran-
sition point and explain the differences in the evolution of the boundary layer. Agreement between the
DNS and the experimental measurements is very good.
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1. Introduction
Various passive roughness elements, have been used in the past to trip the boundary layer over bluff

bodies. Among the most popular methods are wires, dimples and sand-grain roughness, with each having
distinct impact on the transition process and the evolution of the boundary layer. For instance, Choi et al. [9]
carried out wind tunnel tests to study the effect of trip wires on spheres. They used a multi-channel hot-wire
anemometer and a single hot-wire probe to measure the boundary layer velocity profiles. They concluded
that as the boundary layer encounters the trip wire, the flow separates locally creating a shear layer. At
high Reynolds number the shear layer becomes unstable and introduces disturbances to the boundary layer
which becomes fully turbulent and delays the main separation. For sand grain roughness, Achenbach [1]
showed that using small glass beads or sand paper to roughen the surface of the sphere the drag crisis can
be significantly accelerated. As the size of the roughness elements increases the critical Reynolds number is
reduced. However the minimum drag coefficient can not be maintained and rises very quickly as the Reynolds
number is increased. Finally, dimples are another form of roughness elements commonly employed to trip
the boundary layer. A number of investigators carried out wind tunnel experiments on dimpled spheres (see
[8], [5], [3], [2]). The majority of the experiments consisted of mounting prototypes in the wind tunnel and
measuring the drag as function of the Reynolds number. Overall this body of work indicates that the dimple
topology has an impact on the critical Reynolds number, as well as the minimum attained drag coefficient.
In general as the dimple volume is increased the drag crisis is accelerated and the drag coefficient in the post-
critical regime increases. Choi et al. [8] used surface oil flow visualization to identify the global separation
line and measured the streamwise velocity inside and around the dimples. In particular, they found that
dimples cause local flow separation leading to the formation of a detached shear layer that becomes unstable
resulting in the generation of turbulence, which causes transport of high speed fluid closer to the wall. They
also showed that as the Reynolds number is increased the transition point moves gradually upstream but the
global separation point remains unchanged.

Recently Beratlis et al. [6] presented a novel topological modification, comprising of the tessellation of a
sphere, resulting in spherical polyhedral containing mostly hexagonal and some pentagonal flat panels. They
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carried out both wind tunnels tests and measured the drag on tessellated spheres for a range of Reynolds
numbers. The measurements showed that the variation of the drag coefficient as a function of the Reynolds
number for a tessellated sphere is very similar to that of a dimpled sphere: drag crisis occurs and the drag
coefficient remains relatively constant in the post-critical regime. However tessellated spheres exhibited 10%-
15% lower drag in the post-critical regime compared to dimples without a change in the critical Reynolds
number. To investigate the source of drag reduction the authors carried out direct numerical simulations of
both a tessellated and a dimple sphere at the same Reynolds number. The analysis showed the tessellated
spheres exhibit a slightly smaller pressure penalty on the front part and more importantly separation is delayed
by 10

◦ compared to a dimpled sphere at the same Reynolds number, which accounts for the majority of the
drag reduction. In this work we will study the effect of different tessellations on the transition process and
the evolution of the boundary layers. The drag on tessellated spheres for a wide range of Reynolds number
is measured by wind tunnel experiments. Direct numerical simulations are also carried out to provide and
in depth analysis on the boundary layer evolution and explain the difference behavior of the drag curve. A
summary of the methods will be given next followed by results and conclusions.

2. Methodologies
Both wind tunnel experiments and direct numerical simulations have been carried out. The experiments

have been carried out in an open return wind tunnel at the George Washington University with a test section
of 30cm × 25cm × 70cm in the spanwise, vertical and streamwise direction respectively running at speeds
between 18 − 63 m/s. The drag on various spheres was measured using a single component piezoelectric
force sensor mounted on a sting on one end and attached to the back of the spheres on the other end. The
sensor had a diameter of 0.6cm and width of 0.2cm. The sting itself was attached to a rigid test stand located
approximately 20cm behind the spheres. A very thin piano wire 0.05cm in diameter was wrapped around
the sting and securely attached to the floor of the test section to reduce the vibrations on the spheres. The
sphere models had a diameter of 6.85cm and were fabricated via 3D printing using a Projet 3500 machine.
In particular, two tessellated sphere were considered, one with 162 panels, consisting of 150 hexagonal and
12 pentagonal flat faces, and one with 192 panels, consisting of 180 hexagonal and 12 pentagonal flat faces.
The blockage ratio was 4.7% which is below the generally accepted 5% threshold [4]. For validation the
drag coefficient of a smooth sphere in the sub-critical regime (8.0× 10

4
< Re < 2.2× 10

5 ) was measured,
and was in agreement to prior experiments in the literature.

For the numerical simulations the Navier-Stokes equations for viscous incompressible flow are solved on
a structured grid in cylindrical coordinates. In the following the letters r, ϕ, and z denote the radial, azimuthal
and axial coordinates respectively, while θ denotes the polar angle, going from θ = 0

◦ at the stagnation point
at the front of the sphere to θ = 180

◦ at wake side. The immersed boundary formulation proposed by Yang
and Balaras [11] is utilized to imposed boundary conditions on the surface of the sphere. The computational
domain extends 10D upstream and 30D downstream of the sphere (the center of the sphere is located at
r/D = 0, z/D = 0, where r and z are the radial and axial coordinates respectively). The computational grid
consists of 1100 × 3002 × 3002 points in the radial, azimuthal and axial directions respectively. The grid
resolution is very similar to the one used in DNS of the flow over a dimpled sphere [7], which is sufficient to
resolve the dominant flow structures near the wall as well as in the near wake. In particular, near the top of the
sphere (θ = 90

◦) where the skin friction reaches its maximum value, the grid resolution in the wall normal
direction ∆r

+
∼ 1.0, while ∆ϕ

+
∼ 10.0 and ∆z

+
∼ 8.0. The Reynolds number, based on the freestream

velocity U , sphere diameter D and the kinematic viscosity ν, was set to Re = 1.5 × 10
5.

3. Discussion
Fig. 1 shows the variation of the drag coefficient with Reynolds number measured in the wind tunnel for

one dimpled sphere and for two polyhedral spheres, one with 162 and 192 polygonal panels (referred to from
now on as poly162 and poly192 respectively). The ratio of frontal area to that of a smooth sphere is also
very close to 1, with the poly192 and poly162 being 0.986 and 0.982 respectively. Therefore the reduction in
the drag coefficient exhibited by the above polyhedral and shown next can not be attributed to changes in the
frontal area. The drag curves for the polyhedral and dimpled spheres are very similar, with the polyhedral
exhibiting a drag crisis around Re ∼ 8 × 10

4 and maintaining the low drag in the post-critical regime. In
general, as the number of polygonal panels increases, the polyhedral approaches a smooth sphere and the
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Fig. 1: Drag coefficient vs Reynolds number for various spheres. smooth sphere [1];
dimpled sphere with dimple depth k = 0.0035D (present experiment); dimpled sphere with
k = 0.003D (present experiment); icosahedral sphere with 192 polygonal panels (present
experiment); icosahedral with 162 polygonal panels (present experiment); • icosahedral
with 192 polygonal panels (present DNS); • icosahedral with 162 polygonal panels (present DNS);
• dimpled sphere with k = 0.003D (present DNS).

drag crisis shifts towards higher Reynolds numbers while the drag coefficient in the post-critical regime
decreases. The predicted drag coefficient from the present DNS is shown with solid circles. The agreement
with the experimental results is very good with the DNS values are within 2-3% of the experiments. The drag
coefficient, CD = D/(0.5ρU2

A), in the post-critical regime for poly162 and poly192 is 0.178 and 0.155
respectively.

Fig. 2: Contours of the time-average skin friction co-
efficient, Cf , scaled by Re

0.5. a) poly162; b) poly192.
The separation line is shown with a solid black line
while the polar angle at various locations is indicated
by vertical dashed lines. The red rectangular outline
corresponds to the location of the hexagonal dimple
shown in Fig. 4.

To better understand the trends in Fig. 1 we will
compare the results from the corresponding DNS.
Fig. 2 shows contours of the time-averaged skin fric-
tion coefficient, Cf = 2ν/U2 × dU t/dn, (U t is
the time averaged tangential velocity minus the az-
imuthal component and n is the surface normal), for
the two polyhedrals. The separation line is indicated
by a black line and the polar angle θ measured from
the stagnation point at the front is denoted by ver-
tical dashed lines. For the poly162 the flow sepa-
rates locally over the leading edge of a flat panel as
early as 76◦. The exact location of the flat panel is
indicated by a thick black arrow and its perimeter
is highlighted with a thin grey line. The separation
bubble is small and the flow reattaches before the
middle of the panel. Small local separation bub-
bles are again observed at 80◦ and they appear to
be present more consistently over multiple panels in
the azimuthal direction. For poly192 the behavior
of the skin friction is similar but the first local sepa-
ration bubbles start occurring a little later, around θ = 80

◦ and more consistently in the azimuthal direction
closer to θ = 90

◦.
Fig. 3a shows the skin friction coefficient, Cf , averaged over time and the azimuthal direction. The aver-

age surface depth distribution k/D is also plotted at the bottom. The depth is measured relative to the surface
of a smooth sphere of diameter D. For the case of the poly162 k/D exhibits considerable variation while
for poly192 it is more uniform and also consistently lower. Overall, Cf at the front part of the polyhedral
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exhibits local peaks and valleys consistent with those of the depth k/D. The maximum in Cf is observed
at θ = 60

◦ and it is higher for poly162. Global separation, identified as the cross from positive to negative
values of Cf , occurs at θ = 120

◦ and θ = 126
◦ for the poly162 and poly192 respectively. The integral of the

skin friction as a function of θ is shown in Fig. 3b. When the integral is evaluated over the entire sphere it is
equal to the skin friction drag. In the front part of both polyhedral (θ < 45

◦) the integral of the skin friction
is very similar. For θ > 45

◦ the skin friction drag for poly162 is slightly larger than that of poly192. This
is consistent with the higher maximum value of Cf observed for poly192. Overall the skin friction drag for
both polyhedral is less than 10% of the total drag.

Fig. 3: a) Distribution of the average skin friction coef-
ficient, Cf , (top part) and average surface depth (bot-
tom part); b) Integral of Cf . c) Distribution of the
average pressure coefficient Cp (top part) and aver-
age surface depth (bottom part); d) Integral of Cp.
–; poly162, –; poly192; difference between
poly192 and poly162.

The distribution of the average pressure coeffi-
cient, Cp, together with the average surface depth,
k/D, as a function of θ is shown in Fig. 3c. For
poly192, Cp is relatively smooth while for poly162
it exhibits small oscillations that are correlated with
the average depth k/D. At the back of the sphere
(90◦ < θ < 125

◦) Cp for poly192 is lower. However
due to the delayed separation it recovers to a greater
value and remains consistently higher than that of
poly162. As for Cf above, the integral of Cp as a
function of θ is shown in Fig. 3d. For 0◦ < θ < 45

◦

the pressure integrals are very close. For θ > 55
◦

poly162 start to incur a small pressure penalty rel-
ative to the poly192. Approximately 50% contribu-
tion to the additional drag for poly162 comes form
the lower back pressure due to the earlier separation.
The difference in the separation point between the
two types of spheres can be explained by looking
at the evolution of the boundary layer. First of all,
the approximate location of transition to turbulence
can be determined by looking at the behavior of the
velocity fluctuations. The turbulent kinetic energy,
q, averaged over time and in the azimuthal direction
(not shown here) is negligible at the front part for
both polyhedral and they start to rise around θ = 82

◦

and θ = 87
◦ for poly162 and poly192 respectively. It is therefore reasonable to assume that transition to tur-

bulence occurs a little earlier for the poly162. The location of the peak (around θ = 115
◦) and the maxima

values in q are very similar between the two cases.
Fig. 4 shows contours of the instantaneous azimuthal vorticity at a plane cutting through the middle of

one of the hexagonal flat panels near the top of poly192 sphere where transition occurs. Contours of the
instantaneous skin friction coefficient, Cf , are plotted on the surface of the sphere along with the separation
line denoted by a black line. It is clearly seen that a shear layer is formed as the flow separates over the
leading edge of the flat hexagonal panel. The flow separation is not uniform across the span and occurs
over a small portion near the first half of the panel. The flow reattaches again near the center of the panel.
Shortly after the flow separates the shear layer becomes unstable and starts to roll-up into vortical structures,
annotated as rollers A and B in the figure. The evolution of these rollers, which is essential in the transition
process, can be better traced in Fig. 4b, where a top view is shown and the vortical structures are colored
by their streamwise vorticity. It can be seen that roller A is not uniform in the azimuthal direction and
does not extend across the entire span of panel. A similar behaviour can be observed for roller B. As these
rollers undergo instabilities in the azimuthal direction their vorticity is reoriented from the azimuthal to
the streamwise direction. Also, in between the two rollers pairs of counter-rotating streamwise vortices
are present. These vortices are reminiscent of the braid-vortices containing mainly streamwise vorticity of
opposite sign, typically found in free-shear layers undergoing Kevin-Helmhotz type instability. Towards the
end sides of the rollers thin elongated vortices aligned in the sreamwise direction and containing streamwise
vorticity are observed. Farther downstream and close to the trailing edge of the dimple various vortical
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Fig. 4: a) Isosurface of the Q-criterion visualizing vortical structures near the top of the tesselated sphere.
Contours of the instantaneous azimuthal vorticity, ωθ, are also shown at an azimuthal plane going through
the middle of a hexagonal panel along with contours of the instantaneous skin friction, Cf , plotted on the
surface of poly192. The separation line is denoted by solid black line. The location of the hexagonal panel
is indicated with a red box in Fig. 2b. b) Top view with vortical structures colored by contours of tangential
vorticity ωt.

structures resembling a Λ-type vortex are clearly observed. This pack of Λ-type vortices has evolved from
the continuous bending of a previously shed roller and its legs are connected to a pair of braid vortices. We
should note that the rollers aligned primarily in the azimuthal direction are transformed into Λ-type vortices
always within the length of one panel for a given Reynolds number. This mechanism is qualitatively similar
to the one observed for flow over a dimpled sphere [7].

Fig. 5: Plot of the boundary layer thickness δ averaged
over time and azimuthal direction. Lines represent: –;
poly162, –; poly192.

Fig. 5 shows the average boundary layer thick-
ness, δ, as a function of the polar angle θ, up to
the separation point. Since the location of the wall
varies in the azimuthal direction the boundary layer
thickness is first calculated at each azimuthal plane,
as shown in the insert of Fig. 5. This gives a set
of displacement thicknesses δ1 , δ2, ... , δnϕ

with
respect to the local wall location, which are then
averaged over the azimuthal direction ϕ to give δ.
Note that δ is calculated utilizing the vorticity def-
inition proposed by [10], which is more appropri-
ate in the presence of curvature and pressure gradi-
ents. The boudnary layer doesn’t grow in a linear
fashion. At the front part of the polyhedral and up
to θ = 50

◦ the boundary layer grows very slowly.
From θ = 50

◦
80

◦ the growth is faster and after 80◦

as the boundary layer becomes turbulent the growth ramps up significantly. For poly162 the rapid turbulent
boundary layer growth occurs around 82

◦ while for poly192 it occurs a little later, around θ = 87
◦. After that

the rate of boundary layer growth is similar, but the boundary layer for poly162 remains consistently thicker
than that of poly192. As a result of the thicker boundary global separation occurs earlier for the former.

4. Conclusions
We report wind tunnel measurements of the drag coefficient over a range of Reynolds numbers, as well

as DNS on spheres with a novel method of generating surface roughness. The method involves the process
of tessellation by which the surface of a bluff body is approximated by plurality of predominantly hexagonal
flat panels. Two spheres with 162 and 192 polygonal panels are considered. The wind tunnel measurements
demonstrate that the variation of the drag coefficient as a function of the Reynolds number for the two tessel-
lated spheres exhibits the typical behavior as a sphere albeit at a much lower critical Reynolds number: drag
crisis occurs and the drag coefficient remains relatively constant in the post-critical regime. As the number
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of tessellations increases the drag crisis shifts towards higher Reynolds number and the value of the drag
coefficient in the post-critical regime is reduced. However, compared to other commonly employed surface
modifications that also exhibit similar behavior, namely dimples, the tessellation appears to be more effi-
cient because the post-critical drag coefficient can be further reduced without affecting the critical Reynolds
number where the drag crisis happens, or the drag crisis can be accelerated without incurring a drag penalty.

Detailed analysis of the results from the numerical simulations showed that tessellation induces transition
to turbulence through a shear layer instability as the flow locally separates at the leading edge of the hexagonal
panels. The location of the separation is tracked by observing the footprint of the time-averaged skin friction
on the surface of the spheres. It is found that as the number of tessellated panels is reduced the local separation
bubbles move upstream and closer to the stagnation point. The transition point which is identified by plotting
the evolution of the turbulent kinetic energy close to the wall exhibits the same trend. Following transition
it is observed that the boundary layer grows thicker at a faster rate. As a result, the tessellated sphere with
the smaller number of panels starts growing thicker earlier, has less momentum near the wall and the flow
separates earlier. Comparison of the average skin friction on the surface of the spheres reveals that global flow
separation occurs at θ = 120

◦ and θ = 126
◦ for poly162 and poly192 respectively. The delayed separation

for the latter helps the back pressure recover to a higher value, which in turns accounts for a lower form-drag.
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